Frequency Comb Produces an Entangled Web

نویسنده

  • Maria Chekhova
چکیده

Entanglement underlies all of quantum information science. It is most familiar as a relation between two parts of a single system, in which the properties of each part—taken separately—are uncertain but at the same time correlated with the properties of the other part. This so-called “bipartite entanglement” is, however, just one way in which a system can be entangled. Much more complicated is the entanglement between multiple parts of a system. Such “multipartite entanglement” is of interest because it is known to improve certain quantum information protocols and enable others, like secret key sharing between multiple parties. However, until recently, no well-established criteria existed for this kind of entanglement, and it is still an open question how a quantum system should be split into parts to provide better resources for quantum computation. Stefan Gerke and his colleagues from the University of Rostock in Germany and their colleagues at the Kastler–Brossel Laboratory in France address this question [1]. They split the spectrum of a down-converted frequency comb into ten parts, or bands, and determined the entanglement between various combinations of these parts. The team utilizes a recently developed measure of entanglement called optimal witnesses. This work provides a recipe for creating multipartite entanglement and opens a perspective for using it in quantum information technologies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel generation of quadripartite cluster entanglement in the optical frequency comb.

Scalability and coherence are two essential requirements for the experimental implementation of quantum information and quantum computing. Here, we report a breakthrough toward scalability: the simultaneous generation of a record 15 quadripartite entangled cluster states over 60 consecutive cavity modes (Q modes), in the optical frequency comb of a single optical parametric oscillator. The amou...

متن کامل

Frequency comb transferred by surface plasmon resonance

Frequency combs, millions of narrow-linewidth optical modes referenced to an atomic clock, have shown remarkable potential in time/frequency metrology, atomic/molecular spectroscopy and precision LIDARs. Applications have extended to coherent nonlinear Raman spectroscopy of molecules and quantum metrology for entangled atomic qubits. Frequency combs will create novel possibilities in nano-photo...

متن کامل

A deep-UV optical frequency comb at 205 nm.

By frequency quadrupling a picosecond pulse train from a Ti:sapphire laser at 820 nm we generate a frequency comb at 205 nm with nearly bandwidth-limited pulses. The nonlinear frequency conversion is accomplished by two successive frequency doubling stages that take place in resonant cavities that are matched to the pulse repetition rate of 82 MHz. This allows for an overall efficiency of 4.5 %...

متن کامل

Broadband optical frequency comb generation with a phase-modulated parametric oscillator.

We introduce a novel broadband optical frequency comb generator consisting of a parametric oscillator with an intracavity electro-optic phase modulator. The parametric oscillator is pumped by 532-nm light and produces near-degenerate signal and idler fields. The modulator generates a comb structure about both the signal and the idler. Coupling between the two families of modes results in a disp...

متن کامل

Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb.

We report the experimental realization and characterization of one 60-mode copy and of two 30-mode copies of a dual-rail quantum-wire cluster state in the quantum optical frequency comb of a bimodally pumped optical parametric oscillator. This is the largest entangled system ever created whose subsystems are all available simultaneously. The entanglement proceeds from the coherent concatenation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015